

Demonstration of the Carbon Scenario Tool

eauc

■ Flights Economy Short Haul - to/from UK ■ Car - Average - diesel

Webinar outline	Time
Background to the Carbon Scenario Tool, including history and process of development	13:00 - 13:05
Overview of the various Carbon Scenario Tool elements	13:05 – 13:10
Introduction to Carbon Footprinting facility	13:10 - 13:20
Introduction to forecasting facility and dataset requirements	13:20 – 13:25
Building a forecast based on future additional building opening and closures	13:25 – 13:30
Introduction to scenario facility and data requirements	13:30 - 13:35
Building a scenario based on future student and floor area increases	13:35 – 13:45
Incorporating carbon reduction projects	13:45 – 13:50
Interpreting overall results and using graphs and outputs in Climate Change Strategy documents	13:50 - 14:00

Background to the Carbon Scenario Tool

- Developed as a joint funded project between University of Edinburgh and the Scottish Funding Council
- Designed to manage, report and forecast carbon emissions for the University's estate and operations
- It can calculate the impact of carbon reduction projects on the carbon footprint
- Enable the development of scenarios that project future carbon footprints based on:
 - Changing student and staff numbers
 - Changing floor areas
 - Decarbonisation of the electricity grid

What is the Carbon Scenario Tool for?

Overview of CST elements

Where are you going?

What will you be doing?

■ Grid Electricity ■ Natural Gas - direct ■ Natural Gas - CHP

Difference between forecasting and projecting

Forecast

What is the impact of a new engineering building? 20,000 m² Mid-range estimate of consumption: Grid elec: 1,000,000 kWh Natural gas: 3,000,000 kWh

ranication's

Projection

What happens if:

Student numbers increase by 3% per yearDNFloor area increases by 10% per yearI

Building a forecast

• There are a number of ways to do this; very similar to RES CF&PR tool:

Building a scenario; data requirements

This is done in the CSM Factors tab but requires the tool to be loaded with information in Space and People allocations

Data	By year	By campus	
Undergraduate numbers			
Postgraduate numbers		Source:	
Academic staff numbers			
Non-academic staff numbers	Source: HESA records		Source: HESA
Floor area			
Income (£ million)		No required	

How does the tool work? End use matrix

For the three key emission sources (grid electricity, natural gas direct and natural gas CHP), there are assumed to be a set of end uses:

How does the tool work? End use assumptions

Sector	Fuel	Use	Estimated percentage	Campus A
Education	Grid Electricity	Catering	11%	5%
Education	Grid Electricity	Computing	12%	25%
Education	Grid Electricity	Cooling and Ventilation	2%	2%
Education	Grid Electricity	Hot Water	7%	7%
Education	Grid Electricity	Heating	8%	8%
Education	Grid Electricity	Lighting	51%	45%
Education	Grid Electricity	Other	9%	8%

The estimated percentage of end use comes from Government data but can be changed for each campus

Scenario 1: 2% annual growth in staff and student numbers <u>but</u> no floor area increase (grid factor constant)

Scenario 2: 2% annual growth in staff and student numbers <u>and</u> floor area increase (grid factor constant)

Scenario 3: 2% annual growth in staff and student numbers <u>and</u> floor area <u>and</u> annual 3% decrease in grid factor

Incorporating carbon reduction projects

- There is the option to produce a 'with carbon reductions' project forecast or scenario
- Projects need to be entered into the 'Projects' tab with information about applicable campus, amount of anticipated saving and implementation date
- Forecasts and projections (with and without projects) are produced:
 - As carbon emissions
 - As consumption units
 - As cost

Interpreting and using outputs

Use graphs in Carbon Strategy documents to help indicate the impact of growth on carbon emissions Use the CST to develop a range of outcomes for different growth strategies and investment

Use the CST to identify gaps in your understanding of what is driving your carbon footprint How CST could be used

Use CST to demonstrate to senior management how likely you are to meet future targets Use CST to have a discussion with finance managers about capital investment in lower carbon buildings

Use the CST to help develop a strategy for future fuel use composition and investment in technologies